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Our Origins: 1853

An Investigation of the Laws of Thought, on which are Founded the
Mathematical Theories of Logic and Probabilities, G. Boole, 1853.

Opening sentence of Chapter 1:

The design of the following treatise is to investigate the
fundamental laws of those operations of the mind by which
reasoning is performed; . ..

A few chapters later:

Proposition IV. That axiom of metaphysicians which is termed
the principle of contradiction, and which affirms that it is
impossible for any being to possess a quality, and at the same
time not to possess it, is a consequence of the fundamental law
of thought, whose expression is x*> = x.
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Our Origins: 1936

On Computable Numbers, with an Application to the
Entscheidungsproblem, A. Turing, 1936.

Opening sentence of Sec. 1:
We have said that the computable numbers are those whose
decimals are calculable by finite means ... the justification lies in
the fact that the human memory is necessarily limited.

Sec. 9:
| think it is reasonable to suppose that they can only be squares
whose distance from the closest of the immediately previously
observed squares does not exceed a certain fixed amount.
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Mathematical Models vs. Nature

Feynman, Girard, and others: Revisit our abstract models of computation
and logical frameworks in view of the advances in physics.

In other terms, what is so good in logic that quantum physics
should obey? Can’t we imagine that our conceptions about logic
are wrong, so wrong that they are unable to cope with the
quantum miracle?

Instead of teaching logic to nature, it is more reasonable to learn
from her. Instead of interpreting quantum into logic, we shall
interpret logic into quantum (Girard 2007).
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Quantum Mechanics vs. Quantum Computing

Quantum computing . ..
@ Opportunity to re-examine the foundations of quantum mechanics;
@ Can provide executable interpretations of quantum mechanics;
@ Physics is computational;
@ Computation is physical;

@ A precise mathematical model that quantifies the actual cost (i.e.,
resources) needed to perform a physical quantum process;
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Relevance for Computer Science

@ Turing’s original paper is titled “On computable numbers ...”;
@ Computer science’s starting point is that R is uncomputable;

@ Real numbers are explicitly rejected as an appropriate foundation for
computation;

@ The intuitive reason is that one must account for resources.

@ Early papers on “Quantum Complexity Theory” (e.g., Bernstein and
Vazirani 1997) spend considerable time proving that quantum
computing can be done with finite approximations of the real numbers.
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Relevance for Physics

@ In the words of Rolf Landauer (our emphasis):

... the real world is unlikely to supply us with unlimited
memory or unlimited Turing machine tapes. Therefore,
continuum mathematics is not executable, and physical laws
which invoke that can not really be satisfactory . ..

@ Is the universe a computational engine ? Crucially, is it a
computational engine with finite resources ?

@ The conservation laws (e.g., of energy, mass, information, etc.)
suggest the conservation of computational resources;

@ Is it possible that extremely large discrete quantum theories that
contain only computable numbers are at the heart of our physical
universe?
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Relevance for Ph
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Relevance for Physics

A Kochen-Specker Theorem for Imprecisely Specified Measurements
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A Game

| get to pick a secret real number r € R;

| will answer any yes/no questions about it? E.g., is it > 57

Gleason says you can recover the secret based on the observations.

Meyer says there is a catch: this can only be done if the observations
can have infinite precision

Mermin says there is no catch etc.

Kochen-Specker is a generalization of this idea which says the secret
must depend on the experimental setup (i.e., on who is asking the
questions).
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Relevance for Mathematics
@ Equality is not a static relationship; it is a process with computational
content;

@ Homotopy Type Theory (HoTT) with the univalence axiom is a serious
look at equality, identity, and equivalence from a computational
perspective.

@ A proposition is a statement that is susceptible to proof

@ The question of whether two elements of a type (set or space) are
equal is clearly a proposition

@ Reversible physical laws and computational algorithms that conserve
resources are examples of these “equality processes” modeled by
paths in appropriate topological spaces.
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Relevance to Science
Implications (Scott Aaronson, Umesh Vazirani, and others)

One of these wild claims must be true!:

@ the extended Church-Turing thesis is false, or

@ quantum physics is false, or

@ there is an efficient classical algorithm for factoring
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Relevance to Science
Implications (Scott Aaronson, Umesh Vazirani, and others)

One of these wild claims must be true!:

@ the extended Church-Turing thesis is false, or

@ quantum physics is false, or

@ there is an efficient classical algorithm for factoring

If quantum physics is correct then there is an efficient quantum algorithm
for factoring (Shor). If there is no efficient classical algorithm for factoring
then the extended Church-Turing thesis is false.
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Technical Outline |

Goal: revisit quantum mechanics assuming everything is finite.

@ The underlying mathematical structure is a Hilbert space. Let’s
decompose this structure into its basic ingredients: (This is slightly
simplified.)

@ Start with the field R of real numbers;
@ Extend it to the field C of complex numbers;
@ Define a vector space over C;

@ Define an inner product over the above vector space.

Add postulates defining states, composition, evolution, and measurement.

(More about this later.)
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Technical Outline Il

Conventional wisdom is that each of the ingredients of the Hilbert space is
necessary for the formulation of quantum mechanics. But the literature
contains several variants of conventional quantum theory:

@ Instead of R, one could use the p-adic numbers;
@ Instead of C, one could use the quaternions H;
@ Instead of a vector space, one could use a projective space;

@ Instead of infinite fields, one could use finite fields.
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Modal Quantum Theory (1)
@ Ignore complex numbers and ignore the inner product and define a
vector space over an unrestricted field;
@ Focus is Fo, the field of booleans;
@ Scalars: a €{0,1};
@ Scalar addition (exclusive-or):

O+a=a at+0=a 1+1=0

@ Scalar multiplication (conjunction):

Oxa=0 ax0=20 11 =1
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Modal Quantum Theory (Il)

@ One qubit system: 2-dimensional vector space;

@ Four vectors:
0 0 1 1
(0 W) o) -]

@ Three states: the zero vector is considered un-physical;

@ Evolution described by invertible maps.
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Modal Quantum Theory (lll)

Evolution described by invertible maps. There are exactly 6 such maps:

S
S IR
SN IS

Notes: maps do not include Hadamard and are generally not unitary.
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Modal Quantum Theory (1V)

@ Measuring |0) deterministically produces 0;

@ Measuring |1) deterministically produces 1;

@ Measuring |[4) non-deterministically produces 0 or 1 with no
probability distribution.
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A Toy Theory

Schumacher and Westmoreland present modal quantum theories as toy
theories:

@ Retain some quantum characteristics: Superposition, interference,
entanglement, mixed states, complementarity of incompatible
observables, exclusion of hidden variable theories, no-cloning, etc.

@ Can implement elementary quantum algorithms such as superdense
coding and teleportation;

@ Cannot implement richer quantum algorithms: there is no Hadamard.
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A Surprising Development (Hanson, Ortiz, Sabry,
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@ This circuit can be used to solve the unstructured database search in
O(log N) outperforming the known asymptotic bound of O( VN) of
Grover’s algorithm;

@ Our conclusion: these theories are “unreasonable”.
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Analysis
@ Not enough expressiveness: Need to enrich the operations (e.g.,
include Hadamard);

@ Too much expressiveness: Need to restrict the operations (e.g., all
transformations must be unitary);

@ Enriching is easy: use larger, extended, fields;

@ With R, we can require operations to be continuous: vectors that are
“close” to each other must remain “close”.

@ Restriction is more difficult: what does it mean to be “close” in finite
fields; what does it mean to be unitary if we don’t have an inner
product?
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Enriching

Need fields with more structure, specifically “discrete complex
numbers”;

Complex numbers allow some notion of continuity (reflections in 2D).

Fields F, where p = 3 (mod 4) have elements a that behave like the
complex numbers. (E.g. complex conjugation is a.)

Example: F32 has 9 elements:

0
1 1 i —i
T+i =140 A-i 1=

These are all the complex numbers one can form using the integers
modulo 3 as real and imaginary coefficients;

Check (1413 =1+48i-3—i=-2+2i=1-i (mod 3).
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Hermitian Dot Product

o Let|W) = Y%7 ajliyand [0) = X85 Bili);
o Define (| V) = Y91 p° a3
@ (P | V) is the complex conjugate of (V | ®);

@ (® | V) is conjugate linear in its first argument and linear in its second
argument;

@ (V| W) >0andis equal to 0 only if [W) is the zero vector.
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Hermitian Dot Product

o Let|W) = 17 a;liy and |®) = £TF Bilid;
e Define (¢ | V) = 397 87 a;
@ (P | V) is the complex conjugate of (W | ¢); YES

@ (® | V) is conjugate linear in its first argument and linear in its second
argument;

@ (V| W) >0andis equal to 0 only if [W) is the zero vector.
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Hermitian Dot Product

o Let|W) = 17 a;liy and |®) = £TF Bilid;
e Define (¢ | V) = 397 87 a;
@ (P | V) is the complex conjugate of (W | ¢); YES

@ (® | V) is conjugate linear in its first argument and linear in its second
argument; YES

@ (V| W) >0andis equal to 0 only if [W) is the zero vector.
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Hermitian Dot Product

o Let|W) = 17 a;liy and |®) = £TF Bilid;
e Define (¢ | V) = 397 87 a;
@ (P | V) is the complex conjugate of (W | ¢); YES

@ (® | V) is conjugate linear in its first argument and linear in its second
argument; YES

@ (V| W) >0andis equal to 0 only if [W) is the zero vector. NO: in fact
> makes no sense in a finite field in the first place
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An Improvement

@ Can implement more algorithms (e.g., Deutsch algorithm)

@ Previous supernatural algorithm does not always work (only when the
size of the field divides 2N — 1)

@ For a fixed database, matching the supernatural conditions becomes
less likely as the size of the field increases

@ For a fixed field, one can always pad the database with dummy
records to achieve the supernatural efficiency
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Analysis

@ Theory is still unreasonable;

@ We need a proper metric, trigonometric, and geometric constructions;

@ We can, however, already develop discrete counterparts of the Hopf
fibration, the Bloch sphere and count entangled and unentangled
states: Hanson, Ortiz, Sabry, Tai, “Geometry of Discrete Quantum
Computing”, J. Phys. A: Math. Theor. 46 (2013).)

@ Number of unentangled n-qubit states (purity 1): p"(p - 1)";

@ Number of maximally entangled n-qubit states (purity 0):
P (p = 1)(p+1)"".
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Inner Product
@ Let’s look again at the missing property we need: (W | W) > 0 and is
equal to 0 only if |V) is the zero vector;

@ For that to even make sense, we need a sensible notion of > in a
finite field;

@ We need a relation that is reflexive, anti-symmetric, transitive, and
total;

@ Impossible on the entire field but possible on a subset of the
elements.
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Local Order

@ Reisler and Smith 1969 propose to define a > b if (a— b) is a
quadratic residue;

@ Is only transitive if the field has an uninterrupted sequence of
quadratic residues;

@ Reisler and Smith propose fields F,, with p of the form 8M . g; — 1
where q; is the ith odd prime;

@ A better sequence is the sequence A000229 whose nth element is
the least number such that the nth prime is the least quadratic
non-residue for the given element.

@ Good news: there are an infinite number of such fields.
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Example

@ The sequence A000229 starts with 3,7,23,71,311,...;
@ The third element is 23; the third prime is 5; we say p =23 and k =5

@ There are 5 elements {0, 1, 2, 3, 4} that are quadratic residues: check
52 =25 =2 (mod 23) and 72 = 49 = 3 (mod 23);

@ Because we deal with differences, any sequence of 5 elements
centered around an arbitrary field element is totally ordered.
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Local Inner Product
@ Given a d-dimensional vector space, we can define a region where an
inner product can be defined
@ Example p =311 and k = 11

@ Allowed probability amplitudes:

d=1|{0,+1,+2, i, £2i, (1 £ i), (£1 £ 2i), (£2 £ i)}
d=2 | {0,+1, i, (1 i)}

d=3| {0, %1, +i}

d=4 | {0,%1,+i}

d=5|{0, %1, +i}

d>6 | {0}
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Emergence of Conventional Quantum Theory

@ Replace the Hilbert space with a local inner product subspace;
@ Not closed under vector addition or scalar multiplication;

@ But as long as all the probability amplitudes remain within the
selected region, we may pretend to have a full inner product space.

@ In a numerical computation on a microprocessor, as long as the
numbers are within the range of the hardware, we can pretend to
have conventional arithmetic.
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Deutsch-Jozsa

@ Common presentations state it is exponentially faster than any
classical algorithm;

...and in fact, it takes constant time !

Our analysis shows that the size of the field must increase: one must
pay for the extra precision;

For an input function 2" — 2, we need k > 23"+2;

For a single qubit, k = 37;

For two qubits, k = 257.
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So far

@ As the superpositions get denser and denser and the states get

closer and closer to each other, the needed resources must increase;

@ These resources are captured by the size of the underlying field;

@ These resources are not apparent if one uses real numbers;

@ Complexity theorists went to great length to formalize the needed
precision if one uses real numbers (basically T steps require O(log T)
bits of precision)
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Measurement
@ Key insight: The observer has resources that are independent from
the resources needed to model the system;

@ An observer that uses “few” resources will get crude information
about the system;

@ An observer that uses “many” resources will get precise information
about the system;

@ The notions of “few” and “many” can be formalized by comparing the
size of the field used by the observer vs. the size of the field used to
model the system;

@ A new insight on measurement: what happens when two quantum
systems with different underlying field sizes interact?
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Example (1)

@ Given these four 1-qubit states:

W) = 10
W2) = 10)+11)
Wg) = 100+ (1+0)[1)

Way = (1-1)10)+ (1 +0)I1)

@ All amplitudes are in the required range of p = 311, k = 11, and
d=2;

@ Now consider the probabilities of observing various outcomes by an
observer.

@ Let'’s first calculate what an observer with infinite resources will see.
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Example (Il)

@ Normalize using infinite precision numbers

W) = 26 |0)

Vo) 23 (0) + [1))

[W3) 2V2 (10y + (1 + 1) [1))
We) = VB ((1-1)0)+(1+17)I1)

@ Probabilities of measuring 0: 1, 1/2, 1/3, and 1/2
@ Probabilities of measuring 1: 0, 1/2, 2/3, and 1/2

@ But this assumes the observer has enough resources to probe the
state enough to distinguish the amplitudes

@ Mathematically, how do we compute these square roots in finite
fields?
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Example (111)

@ Another idea based on Reisler and Smith 1969

@ Approximate square roots calculation in finite fields
@ Round up to the next quadratic residue

@ In afield with k > 19:

V2 = V& = 2
V3 = V4 = 2
V6 = V9 = 3
@ Observed amplitudes:
Vi) = 610)
Vo) = 4(j0)+ 1)
Wa) = 4(0)+(1+1))
W) = 3((1-1)0y+(1+i)1)
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Example (1V)

@ Observed probabilities of measuring 0:

{36,16,16,18} / {36, 32,48,36}

@ Observed probabilities of measuring 1:

{0,16,32,18} / {36,32,48, 36}

@ Exact probabilities of measuring 0: 1, 1/2, 1/3, and 1/2

@ Exact probabilities of measuring 1: 0, 1/2, 2/3, and 1/2

@ Relative order is preserved but exact ratios (16 = 3 # 36) and exact

equality are not (16 # 18)
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Example (V)

@ In afield with k > 1230, a better approximation of the square roots:

@ Observed amplitudes:
vy
W,

3

~ ~ ~—— ~——

€| €|
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200 = V225 = 15
300 = V324 = 18
V625 = 25
50 (10))
36 (|0) + [1))
30 (10y + (1 +1)[1))
25 (1 =0)[0y + (1 + 1) (1))
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Example (VI)

Observed probabilities of measuring 0:

{2500, 1296, 900, 1250} / {2500, 2592,2700, 2500}

Observed probabilities of measuring 1:

{0, 1296, 1800, 1250} / {2500, 2592,2700, 2500}

Exact probabilities of measuring 0: 1, 1/2, 1/3, and 1/2;

Exact probabilities of measuring 1: 0, 1/2, 2/3, and 1/2;

16 = 3 vs. 36 is now 900 = 3 vs. 2500; better approximations using
more resources
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Cardinal Probabilities

@ Given several probabilistic events ey, eo, .. .;

@ Define a set of “rulers” u1, up, ... that are “equal” to within some
precision;

@ Measure each event with its own ruler;

@ If the rulers are infinitely accurate, the measurement results can be
directly compared; one can say “twice as likely”

@ Otherwise, one can only speak of “at least as likely as”

Amr Sabry (IU) Discrete Quantum Theories Colloquiumfest 43/ 45



Conclusions

@ A simple finite field (e.g., booleans) is sufficient for teleportation,
superdense coding, etc. Only thing needed is (constructive and
destructive) superposition

@ Finite fields extended with i are sufficient for deterministic algorithms
such as Deutsch’s algorithm. In addition to superpositions, we need
limited geometric notions (e.g., orthogonality).

@ The above theories are, as far as we know, at odds with our present
understanding of physical reality.

@ Finite fields with locally-ordered elements are rich enough for
conventional quantum theory to emerge as the size of the field
increases.
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Conclusions
@ Accurate accounting of resources used during evolution; this is
modeled by the size of the underlying field;

@ The precision of the numeric approximations provided by the
underlying number system, which is completely hidden in the real
number system, is exposed as an explicit computational resource;

@ Novel accounting of the resources used by the observer to extract
information from the system;

@ Finite trigonometry; finite geometry; finite Hopf fibrations, etc.

@ Novel counting of the number of irreducible states, the relative sizes
of the unentangled and entangled states, including maximally
entangled states, i.e., those with zero purity.
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